An Assessment of Density-Based Finescale Methods for Estimating Diapycnal Diffusivity in the Southern Ocean
نویسندگان
چکیده
Finescale estimates of diapycnal diffusivity k are computed from CTD and expendable CTD (XCTD) data sampled in Drake Passage and in the eastern Pacific sector of the Southern Ocean and are compared against microstructure measurements from the same times and locations. The microstructure data show vertical diffusivities that are one-third to one-fifth as large over the smooth abyssal plain in the southeastern Pacific as they are inDrakePassage,where diffusivities are thought to be enhanced by the flowof theAntarctic CircumpolarCurrent over rough topography. Finescalemethods based on vertical strain estimates are successful at capturing the spatial variability between the low-mixing regime in the southeastern Pacific and the high-mixing regime of Drake Passage. Thorpe-scale estimates for the same dataset fail to capture the differences between Drake Passage and eastern Pacific estimates. XCTD profiles have lower vertical resolution and higher noise levels after filtering than CTD profiles, resulting in XCTD k estimates that are, on average, an order of magnitude higher than CTD estimates. Overall, microstructure diffusivity estimates are better matched by strain-based estimates than by estimates based on Thorpe scales, and CTD data appear to perform better than XCTD data. However, even the CTD-based strain diffusivity estimates can differ from microstructure diffusivities by nearly an order of magnitude, suggesting that density-based fine-structure methods of estimating mixing from CTD or XCTD data have real limitations in low-stratification regimes such as the Southern Ocean.
منابع مشابه
Time Integration of Diapycnal Diffusion and Richardson Number Dependent Mixing in Isopycnal Coordinate Ocean Models
In isopycnal coordinate ocean models, diapycnal diffusion must be expressed as a nonlinear difference equation. This nonlinear equation is not amenable to traditional implicit methods of solution, but explicit methods typically have a time step limit of order (where is the time step, h is the isopycnal layer thickness, and κ is the diapycnal diffusivity), which cannot generally be satisfied sin...
متن کاملObservations of Enhanced Diapycnal Mixing near the Hawaiian Ridge
Profiles of potential density obtained from CTD casts at two stations at different distances from the Hawaiian ridge are examined for evidence of diapycnal turbulent mixing as indicated by density inversions and internalwave vertical strain. Results from independent casts are used to produce ensemble-averaged vertical distributions for the number of inversions and the Thorpe scale. Both paramet...
متن کاملThe Influence of Diapycnal Mixing on Quasi-Steady Overturning States in the Indian Ocean
A regional general circulation model (GCM) of the Indian Ocean is used to investigate the influence of prescribed diapycnal diffusivity (Kd) on quasi-steady states of the meridional overturning circulation (MOC). The model has open boundaries at 35°S and 123°E where velocity, temperature, and salinity are prescribed at each time step. The results suggest that quasi-steady overturning states in ...
متن کاملControl of Lower-Limb Overturning Circulation in the Southern Ocean by Diapycnal Mixing and Mesoscale Eddy Transfer
A simple model is developed of the lower limb of the meridional overturning circulation in the Southern Ocean based on residual-mean theory. It is hypothesized that the strength of the lower-limb overturning ( ) is strongly controlled by the magnitude of abyssal diapycnal mixing ( ) and that of mesoscale eddy transfer (K ). In particular, it is argued that K. The scaling and associated theory f...
متن کاملTopographic enhancement of vertical turbulent mixing in the Southern Ocean
It is an open question whether turbulent mixing across density surfaces is sufficiently large to play a dominant role in closing the deep branch of the ocean meridional overturning circulation. The diapycnal and isopycnal mixing experiment in the Southern Ocean found the turbulent diffusivity inferred from the vertical spreading of a tracer to be an order of magnitude larger than that inferred ...
متن کامل